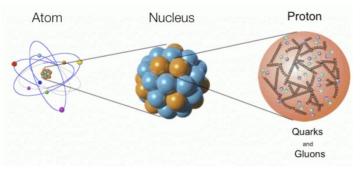
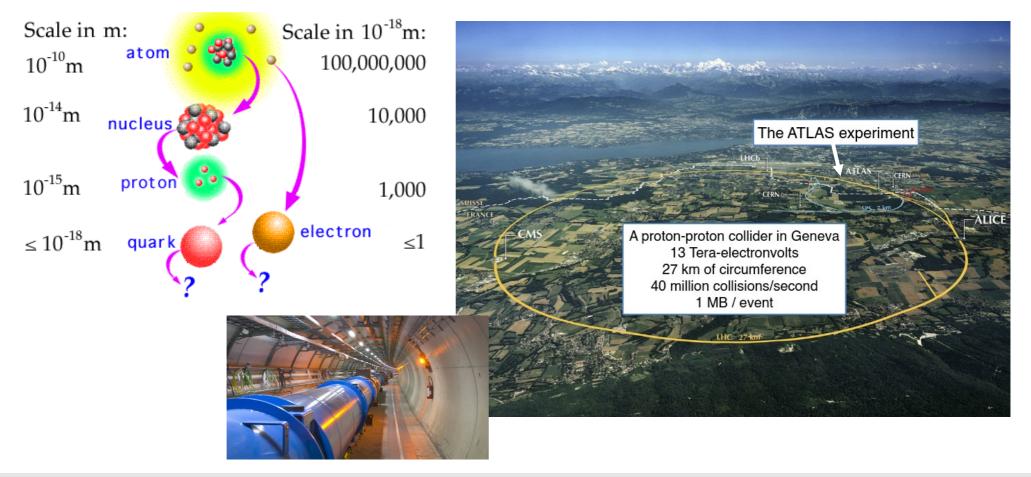
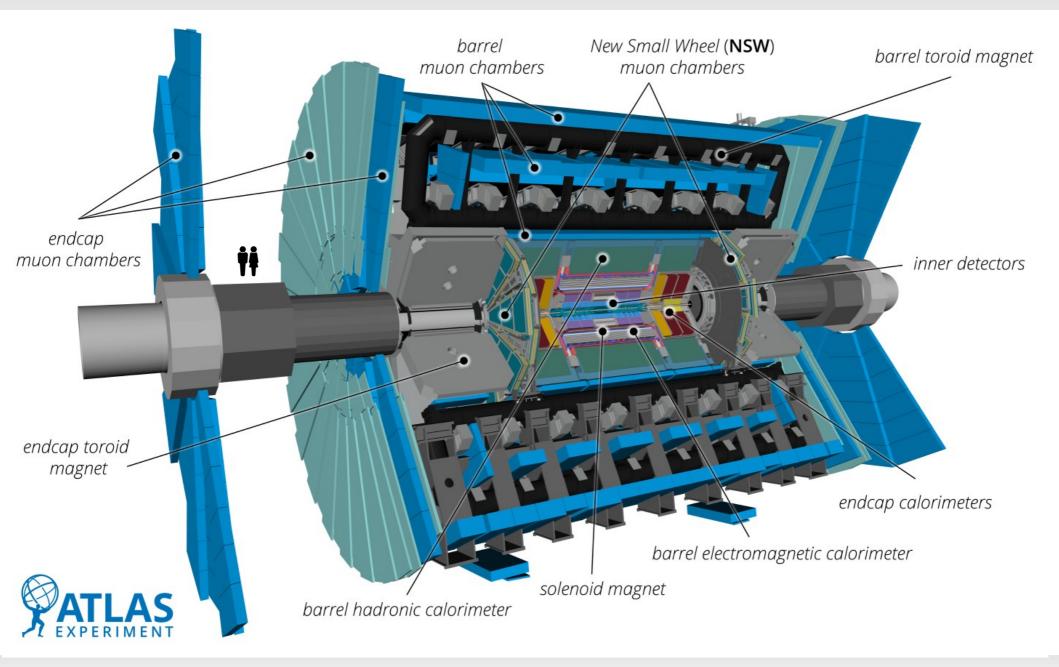

Recent results from the ATLAS experiment

S. V. Chekanov (ANL)

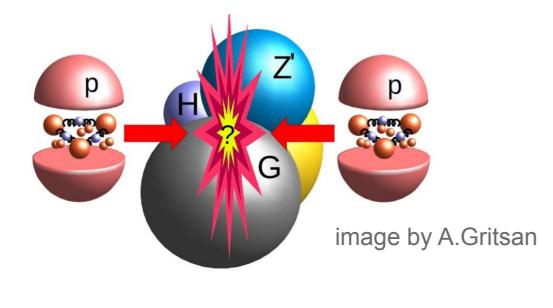

On behalf of the ATLAS collaboration

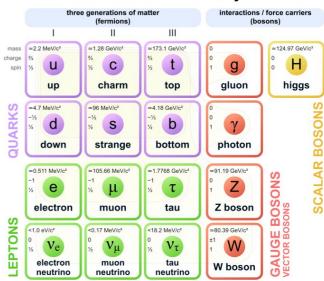
Miami 2024, USA, December 12- 19, 2024




LHC Large Hadron Collider the world's highest-energy particle accelerator

- **¬** protons are accelerated to $\sim 13 13.6$ TeV
- kinetic energy is transformed into matter at the collision
- new particles are being produced

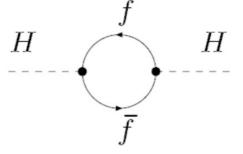


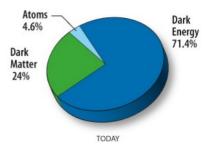

ATLAS detector for Run3

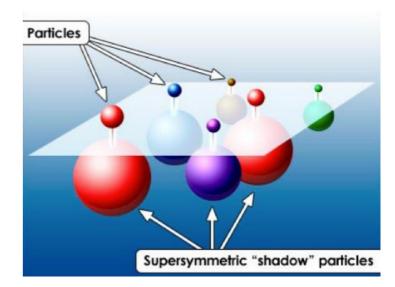
Studies of elementary particles at highest energy

• Focus Energy into tiny spot \rightarrow produce new matter / energy E = mc²

Standard Model of Elementary Particles

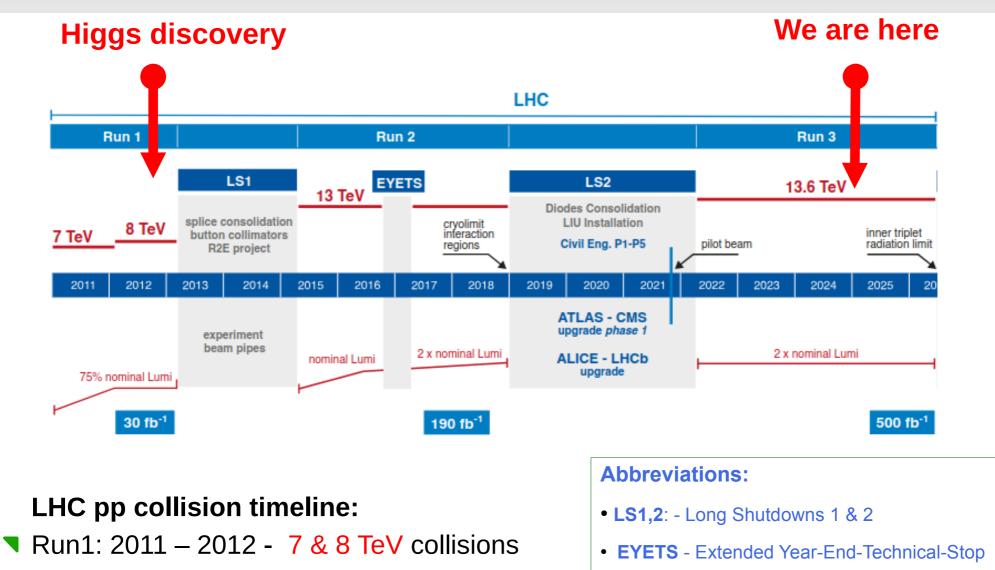

- The Standard Model the current best framework to describe the most basic building blocks of the universe.
- Successfully explained almost all experimental results and precisely predicted a wide variety of phenomena, including the Higgs boson
- 2012: Discovery of Higgs bosons at the LHC at the mass 125 GeV


Many open questions

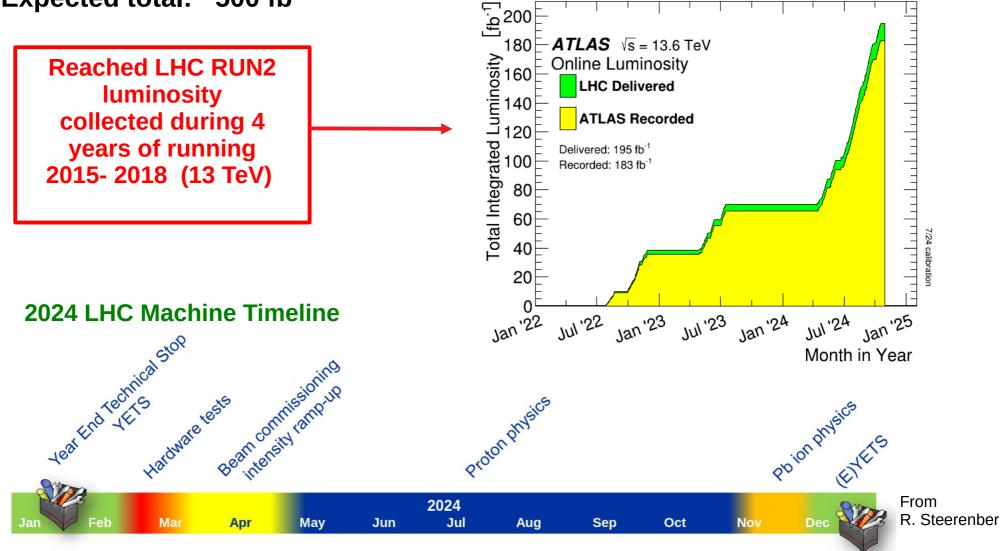

- What is the origin of the Higgs?
- What is the origin of dark matter and dark energy?
- Matter and almost no antimatter
- What is the origin of ~20 free parameters of Standard Model?
- What is origin of fine tuning in the Standard Model?

Example:

Higgs mass is a measured parameter, but it mass should be very large if we calculate it from a theory large contributions from quadratic diverges due to radiative corrections.



In order for the Higgs boson mass to be finite, a fine tuning (cancellation) of various loops is required ("hierarchy problem"). **New particles** can cancel such divergencies and will lead to the finite 125 GeV mass

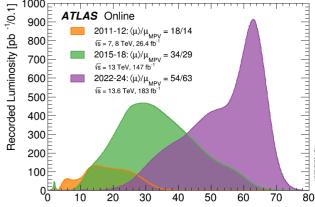

Current LHC status: From Run2 to Run3

- Run2: 2015 2018 13 TeV collision
- Run3: 2022 2026 13.6 TeV collisions (ongoing)

Run3 data taking

- 2022-2024: LHC is delivering as scheduled, at 13.6 TeV
- Expected total: ~500 fb⁻¹

JINST 19 (2024) P05063


Collision environment & detector improvements for Run3

- LHC had µ=63 for Run3 (x2 larger than for Run2)
- ATLAS was running at 94% recording efficiency

Changes in performance for Run3

- Muon New Small Wheel system included in data resulted in increased efficiency for muons in 2023
- Improved Large Radius Tracking (LRT) for Run 3
- Calorimeter timing information to reject contributions from pileup to topoclusters (used for jets)
- Machine-Learning (ML) entering all stages of the reconstruction/calibration chains
- Improved flavor tagging using ML ("GN2")
- Improved trigger menus to address larger pileup
- .. etc.

Mean Number of Interactions per Crossing

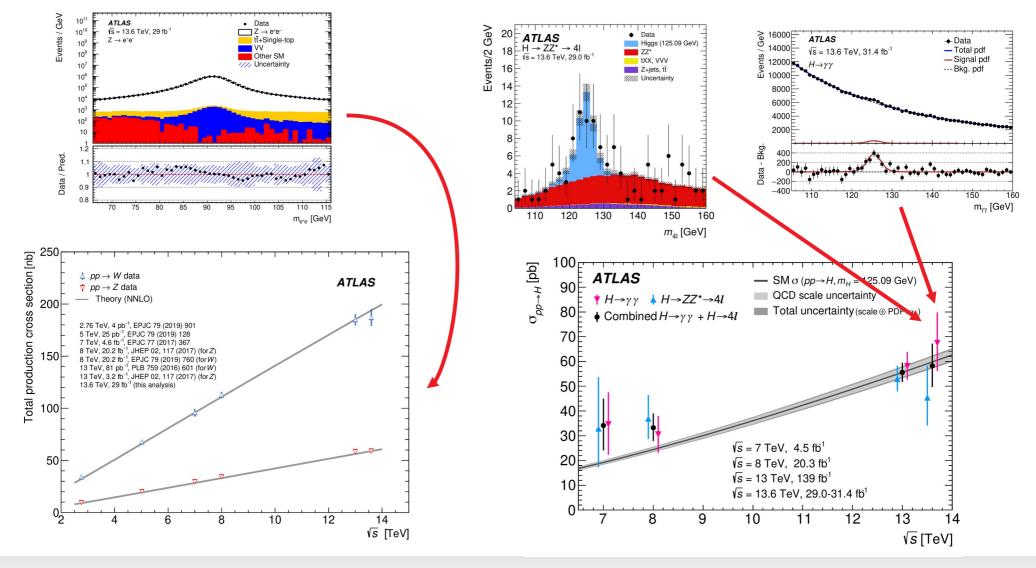
Physics program at the LHC

Precision Standard Model measurements

Improving our knowledge of what we have already discovered, understanding Standard Model fundamental parameters

Search for new physics

Searching for deviations from our expectations – discovering unusual effects and new particles


Precision Standard Model (SM) measurements

 Improving our knowledge of what we have already discovered and understanding Standard Model (SM) fundamental parameters


Tests of Standard Model at Run3

- Basic tests of energy dependence of cross sections at Run3 before anything else
- Agreement with the expectations for Z, W and Higgs bosons at 13.6 TeV

Tests of Standard Model at Run3

- Basic tests of the energy dependence before anything else
- Double boson production (ZZ) is excellent probe for new scalar bosons, off-shell production of the Higgs boson etc.
- Measurements of figucial ZZ cross section in lepton decays:

Top-quark production associated with other quarks

CERN-EP-2024-242 CERN-EP-2024-191

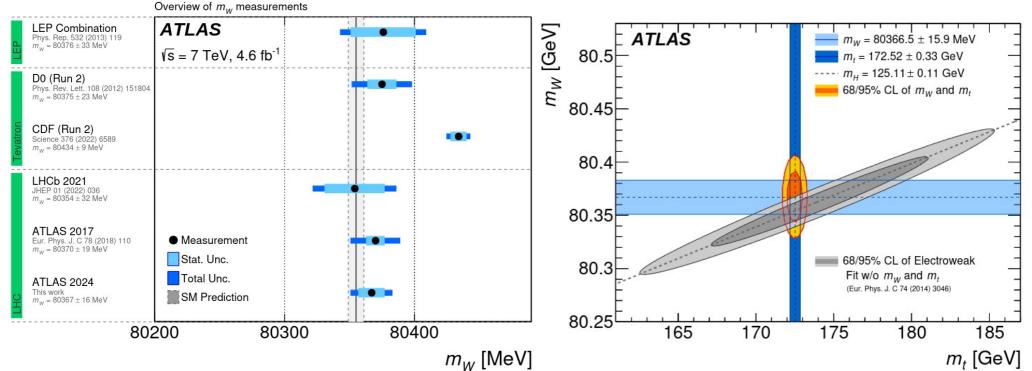
 $\sqrt{s} = 13 \text{ TeV}$. 140 fb⁻¹

ATLAS

 $t\bar{t} + b\bar{b}$ Powheg+Pythia8 Data total/stat. uncertainty After the discovery of top quarks at $t\bar{t} + b\bar{b}$ Powheg+Pythia8 $p_{T}^{hard} = 1$ tt Powheg+Pythia8 **TEVATRON**, and precision $t\bar{t}$ Powheg+Pythia8 $h_{damp} = 3 m_t$ $t\bar{t} + b\bar{b}$ Powheg+Pythia8 $h_{bzd} = 2$ $t\bar{t}$ Powheg+Pythia8 $p_{T}^{hard} = 1$ $t\bar{t} + b\bar{b}$ Powheg+Pythia8 dipole recoil measurements at the LHC, tt + bb Powheg+Herwig7 tt Powheg+Herwig7 *t*t MadGraph5_aMC@NLO+Herwig7 tt + bb Sherpa 2.2.10 main focus - on final states σ_{meas} [pb] with top and multiple quarks (c, b). $\bar{t} + \text{jets}$ (47.1 ± 2.3) × 0.1 $t\bar{t} + light$ (36.0 ± 1.8) × 0.1 000000 $t\bar{t} + 1c$ 6.4 ± 0.9 $|t\bar{t}+\geq 2c|$ 1.28±0.25 + similar diagrams replacing c-quarks by b-quarks $|t\bar{t}+>1b|$ 3.46±0.24 0.50 0.75 1.00 0 2 3 5 Fiducial cross section [pb] A custom flavor tagging tailored to

simultaneously tag c-jets and b-jets. NLO+PS predictions for tt + ≥ 2 and tt + 1 are largely consistent with the measurement, though all underpredict the observed values.

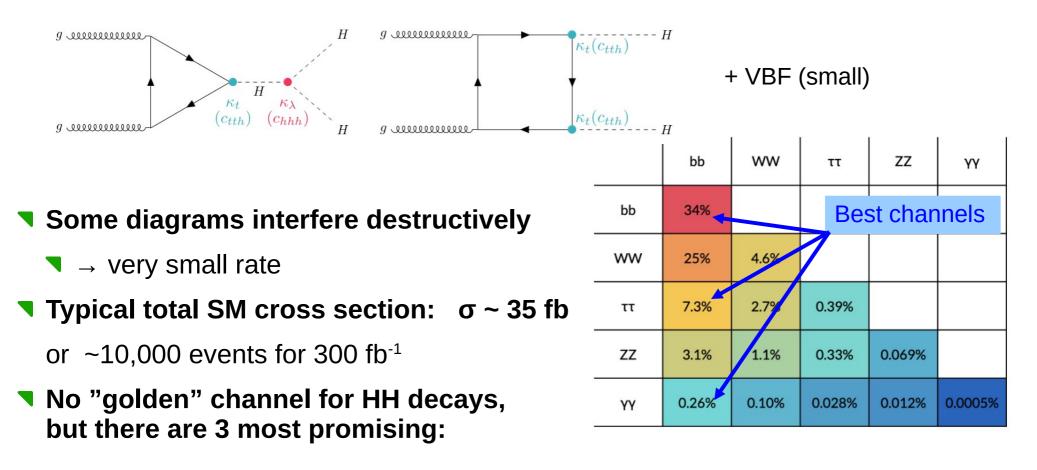
Essential for precision measurements of rare **SM** processes


1.25

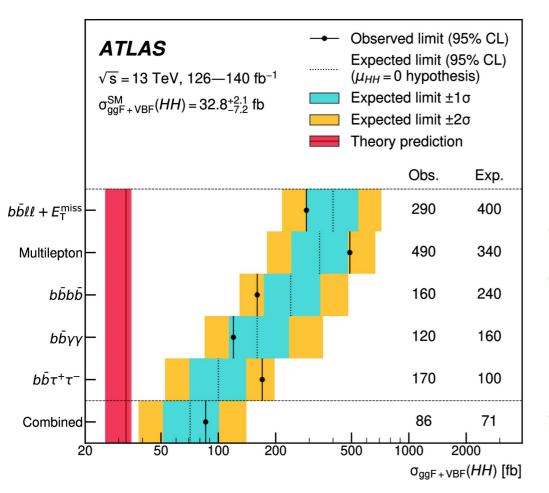
MC / Data

1.50

W mass measurements


- W mass is one of the most important parameter of the Standard Model
- Closely related to the masses of heaviest particles top quark and the Higgs boson

- ATLAS finds M(W) to be 80366.5 MeV, with an uncertainty of just 15.9 MeV.
- The measured value is 10 MeV lower than the previous ATLAS result but in agreement with the Standard Model.
- Agrees with a similar CMS measurement of 80360.2 ± 9.9 MeV
- Also improvements in the measured width : 2202 ± 47 MeV

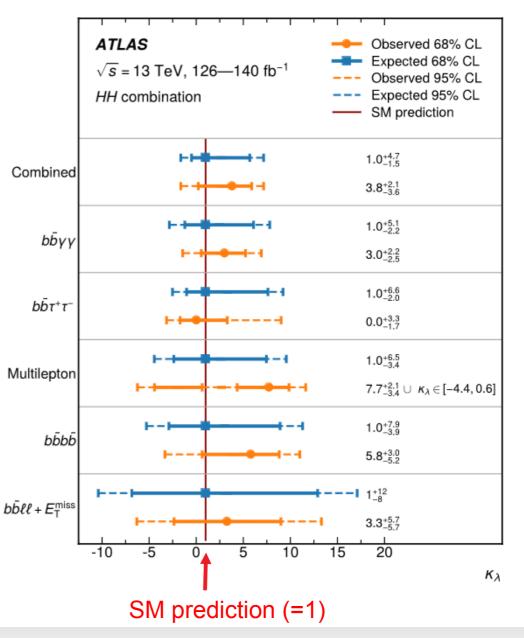

Higgs boson pair (HH) production

- Non-resonant pairs of Higgs bosons (HH) → the prime experimental signature of the Higgs boson self-interaction. Simplest self-replicated process in nature!
- Non-resonant HH arises from several diagrams, dominated by gluon-gluon fusion (ggF) and vector-boson fusion (VBF)

Higgs boson pair production

Currently, only limits are possible for various channels, but their combination is already close the the expected SM cross section.

Obs (exp) for signal strength/SM : 2.9 (2.4) \times SM

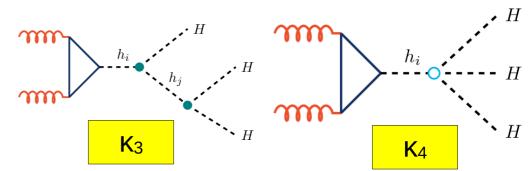

- Best sensitivity from bbττ and bbγγ
- Combined results are limited by statistical uncertainties, but some channels (bbbb) starting to get limited by systematics
- Ongoing effort for an ATLAS+CMS combination

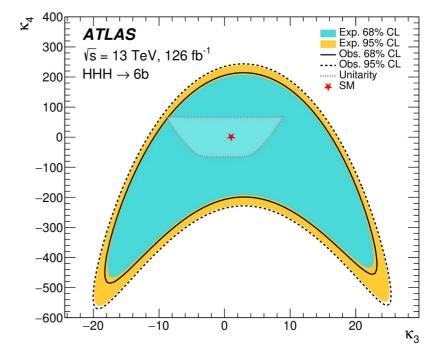
Higgs boson pair production

Measure the ratio of the Higgs boson couplings to their SM value:

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

- Summary of the SM expected (blue) and observed (orange) one-dimensional intervals at 68% CL on κ_λ
- When profiling k_λ, other Higgs boson couplings are set to their SM values.
- Results are fully consistent with the SM predictions




CERN-EP-2024-285

3-boson Higgs production (HHH)

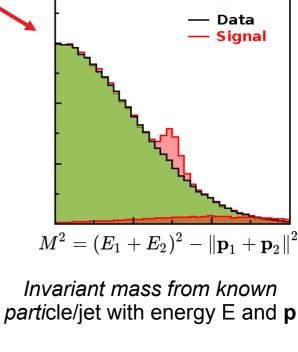
- Even more challenging analysis
 - 3 boson production to 6-bjets !
- What is the interplay between κ₃ and κ₄ couplings?
- No evidence for HHH production. An upper limit of 59 fb is set at 95% confidence level on the cross-section for Standard-Model HHH production.

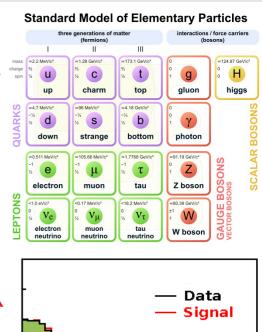
Searches for physics Beyond Standard Model (BSM)

- BSM: Searching for deviations from our expectations – discovering unusual effects and new particles.
 - BSM signal models:
 - SUSY is an extension of the SM aiming to fill some of the gaps and predicting partner particles for SM particles.
 - Sequential SM predicting heavy W' / Z' bosons
 - Grand unified theories
 - Two Higgs Doublet Models (2HDM)
 - Heavy Vector Triplet (HVT) models
 - Extra dimensions
 - Models with CP-violation
 - Leptoquark (LQ) models
 - Dark matter (DM) models
 - .. etc. etc.

New particles at collider experiments

- Standard Model (SM) is successful for particle collisions
- Discrepancies may indicate new physics = new particles/fields

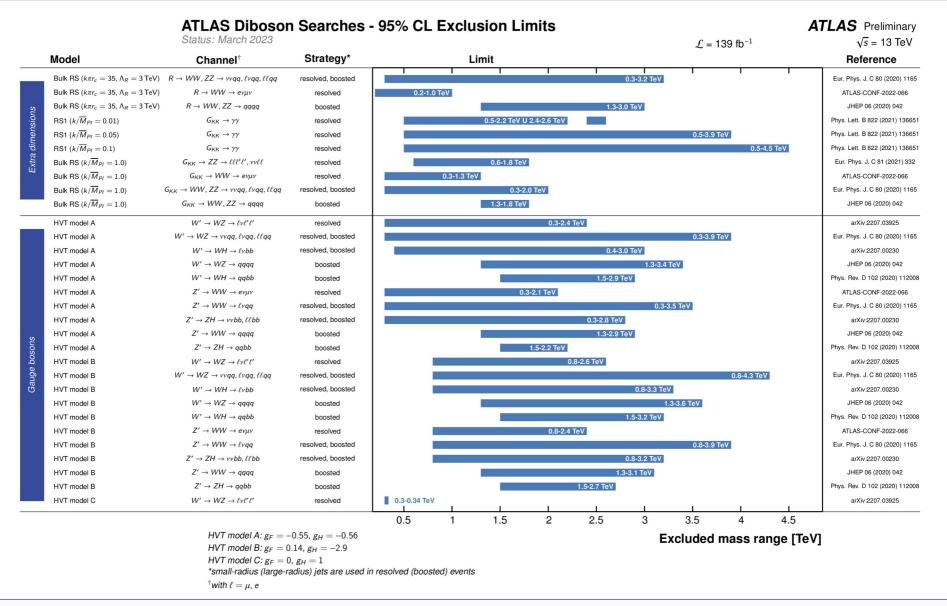

Direct observations of new particles


- Combine known particles/jets to create "invariant masses"
 & search for "resonance" enhancements above background
- or observe through unusual signatures in detector (anomalously high dE/dx tracks etc)

Indirect observations of new particles

- Compare SM predictions with data
- Search for any discrepancy with SM background
- Explain using theoretical frameworks beyond SM (BSM)

No evidence yet but no shortage of models predicting exotic heavy particles



ATLAS searches for new particles

Model	1,7	Jets†	E_{T}^{miss}	∫£ dt[fb	-1]	Lin	nit	J - ,	3.6 – 139) fb ⁻¹	Reference
ADD $G_{KK} + g/c$ ADD non-resona ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow$ Bulk RS $g_{KK} \rightarrow$ 2UED / RPP	nt γγ 2 γ - - 2 γ WW/ZZ multi-cha	- 2 j ≥3 j - unnel v ≥1 b, ≥1J/2		139 36.7 139 3.6 139 36.1 36.1 36.1 36.1	M _D Ms Mth G _{KK} mass G _{KK} mass g _{KK} mass KK mass		1.81	8.6 TeV 9.4 TeV 9.55 TeV 4.5 TeV 2.3 TeV 3.8 TeV		2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
$\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell\\ \text{SSM } Z' \rightarrow \tau\tau\\ \text{Leptophobic } Z''\\ \text{Leptophobic } Z'\\ \text{SSM } W' \rightarrow \ell\nu\\ \text{SSM } W' \rightarrow \tau\nu\\ \text{SSM } W' \rightarrow tb\\ \text{HVT } W' \rightarrow WZ\\ \text{HVT } Z' \rightarrow WW\\ \text{LRSM } W_R \rightarrow \mu H \end{array}$		- 2b 2 b ≥ 1 b, ≥2 J ≥1 b, ≥1 J μ 2 j / 1 J 2 j (VBF)	Yes Yes	139 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass Z' mass Z' mass	340 GeV		5.1 TeV 2.42 TeV 1 TeV 4.1 TeV 5.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.9 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_{rf} = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-04 ATLAS-CONF-2021-04 2004.14636 2207.03925 2004.14636 1904.12679
Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	2 e,, 2 e 2 µ ≥1 e,	1 b 1 b	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 1 2.0	TeV TeV 2.57 TeV	21.8 TeV $\eta_{\bar{t}L}$ 35.8 TeV $\eta_{\bar{t}L}$ $g_* = 1$ $ G_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Axial-vector med Pseudo-scalar m Vector med. Z'-: Pseudo-scalar m	ed. (Dirac DM) 0 e, μ, 2 2HDM (Dirac DM) 0 e, μ	2 b	- Yes Yes	139 139 139 139	m _{med} m _{med} m _{Z'} m _a	376 GeV	800 GeV	3.8 TeV 3.0 TeV	$\begin{array}{l} g_{q} \!=\! 0.25, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 {\rm TeV} \\ g_{q} \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 {\rm GeV} \\ \tan \beta \!=\! 1, g_{\chi} \!=\! 0.8, m(\chi) \!=\! 100 {\rm GeV} \\ \tan \beta \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022- 2102.10874 2108.13391 ATLAS-CONF-2021-0
Scalar LQ 1st ge Scalar LQ 2nd ge Scalar LQ 3nd ge Scalar LQ 3nd ge Scalar LQ 3nd ge Scalar LQ 3nd ge Vector LQ and ge Vector LQ 3nd ge	$\begin{array}{ccc} n & & 2\mu \\ n & & 1\tau \\ n & & 0e_{,,} \\ n & & \geq 2e, \mu , \\ n & & 0e, \mu, \geq \\ en & multi-che \end{array}$	≥1 τ ≥1 j, ≥1 b 1 τ 0 − 2 j, 2 b n n el ≥1 j, ≥1 b	Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass		1.8 1 1.7 Te 1.49 TeV 1.24 TeV 1.43 TeV 1.26 TeV 2.0 1.96	ev 1 TeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(LQ_{2}^{u} \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_{2}^{u} \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_{2}^{u} \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_{2}^{d} \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_{1}^{d} \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_{1}^{u} \rightarrow t\mu) = 1, \text{ YM coupl.} \end{array}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-0 2303.01294
$\begin{array}{c} \text{VLQ } TT \rightarrow Zt - \\ \text{VLQ } BB \rightarrow Wt/ \\ \text{VLQ } T_{5/3} T_{5/3} T \\ \text{VLQ } T \rightarrow Ht/Z \\ \text{VLQ } T \rightarrow Ht/Z \\ \text{VLQ } T \rightarrow Ht/Z \\ \text{VLQ } T \rightarrow Hb \\ \text{VLL } \tau' \rightarrow Z\tau/Ht \end{array}$	$ \begin{array}{ccc} Zb + X & \text{multi-cha} \\ & & \\ 5/3 \rightarrow Wt + X & 2(SS)/\geq 3 \\ t & & 1 e_{,j} \\ & & 1 e_{,j} \\ & & 1 e_{,j} \\ & & 0 e_{,i} \end{array} $	$e, \mu \ge 1$ b, ≥ 1 j $a \ge 1$ b, ≥ 3 j $a \ge 1$ b, ≥ 1 j $a \ge 2$ b, ≥ 1 j, ≥ 1	Yes Yes Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass		1.46 TeV 1.34 TeV 1.64 Te 1.8 T 1.85 2.0 898 GeV	V reV	$\begin{array}{l} SU(2) \text{ doublet} \\ SU(2) \text{ doublet} \\ \mathcal{B}(T_{5/3} \rightarrow W) = 1, c(T_{5/3} Wt) = 1 \\ SU(2) \text{ singlet, } \kappa_T = 0.5 \\ \mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1 \\ SU(2) \text{ doublet, } \kappa_B = 0.3 \\ SU(2) \text{ doublet} \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-0 1812.07343 ATLAS-CONF-2021-0 2303.05441
Excited quark q [*] Excited quark q [*] Excited quark b [*] Excited lepton τ [*]	$\rightarrow q\gamma$ 1 γ $\rightarrow bg$ -	2j 1j 1b,1j ≥2j	-	139 36.7 139 139	q* mass q* mass b* mass τ* mass			6.7 TeV 5.3 TeV 3.2 TeV 4.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Type III Seesaw LRSM Majorana Higgs triplet H ^{±±} Multi-charged pa Magnetic monop	$\rightarrow W^{\pm}W^{\pm}$ 2,3,4 e, μ $\rightarrow \ell \ell$ 2,3,4 e, μ rticles -	2 j (SS) various (SS) - - -	Yes - Yes - -	139 36.1 139 139 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged parti monopole mass	350 GeV	910 GeV 1.08 TeV 1.59 TeV 2	3.2 TeV / .37 TeV	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-0 1905.10130

Heavy particles excluded up to 12 TeV mass for ~50 BSM signatures

ATLAS searches for new particles: Diboson decays

Heavy particles with VV decays excluded up to 4.5 TeV for several BSM scenarios

CERN-EP-2024-166

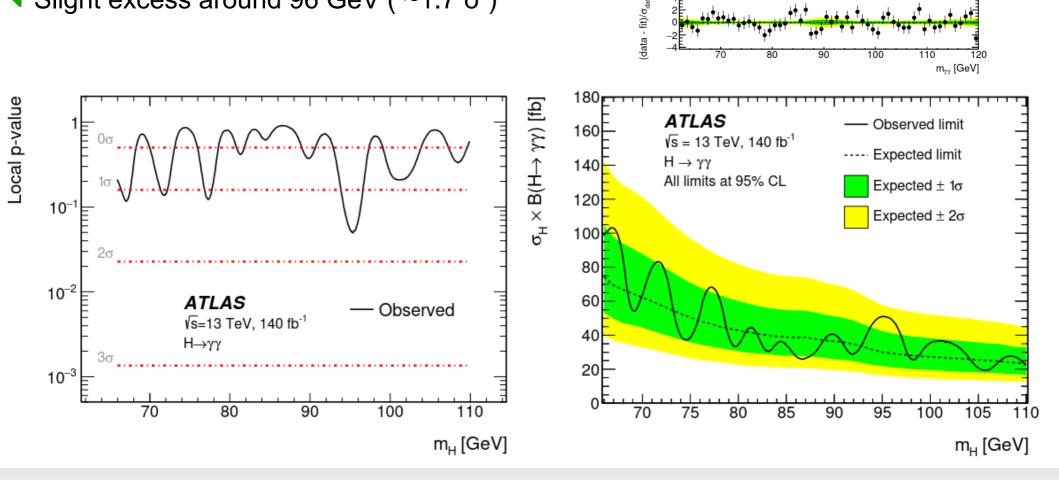
Data

± 1σ

± 2σ

- Total Background

---- Continuum Background


ATLAS √s=13 TeV, 140 fb⁻¹

 $X \rightarrow \gamma \gamma$

CC Category

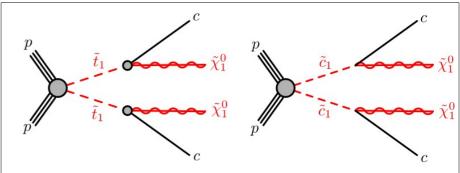
Search for diphoton resonances

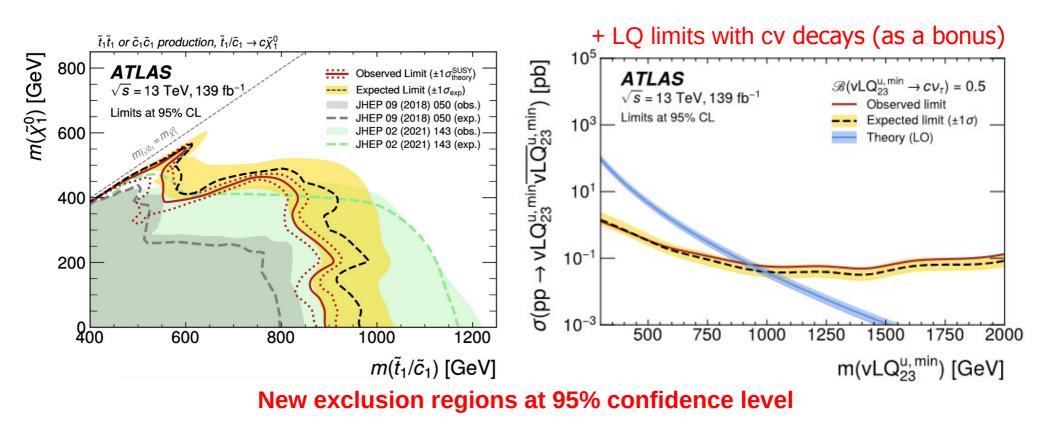
- Some models predict new resonances below the Higgs mass in extended Higgs sector: two Higgs Doublet Models (2HDM) or Axion-like particle in SUSY models, etc.
- **Slight excess around 96 GeV (** \sim 1.7 σ)

Events / GeV

10000

8000

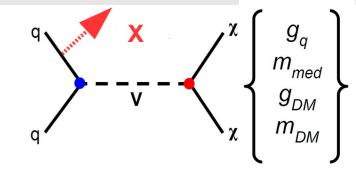

6000

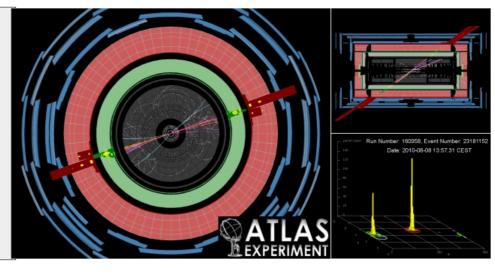

4000

Z-boson region

Search for SUSY in events with missing transverse momentum and charm-tagged jets CERN-EP-2024-218

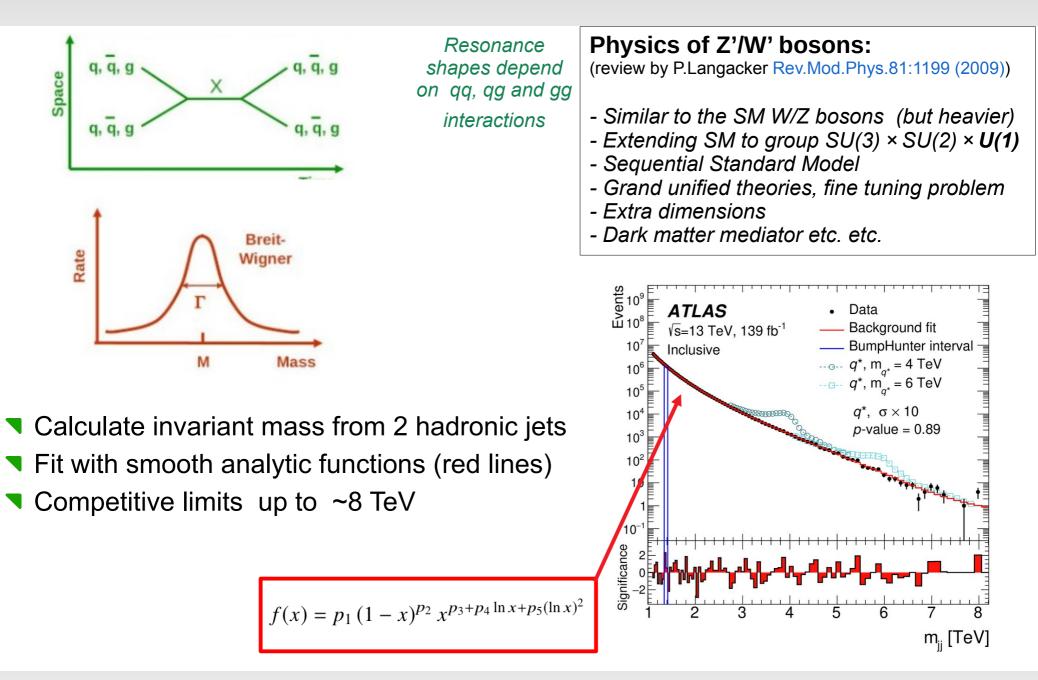
- Reanalyzing Run2 data with improved c-quark tagging and new rec. technique
- Top/charm squark masses excluded up to ~900 GeV at 95% CL, assuming each squark decays into a charm quark and a lightest supersymmetric particle X₁⁰

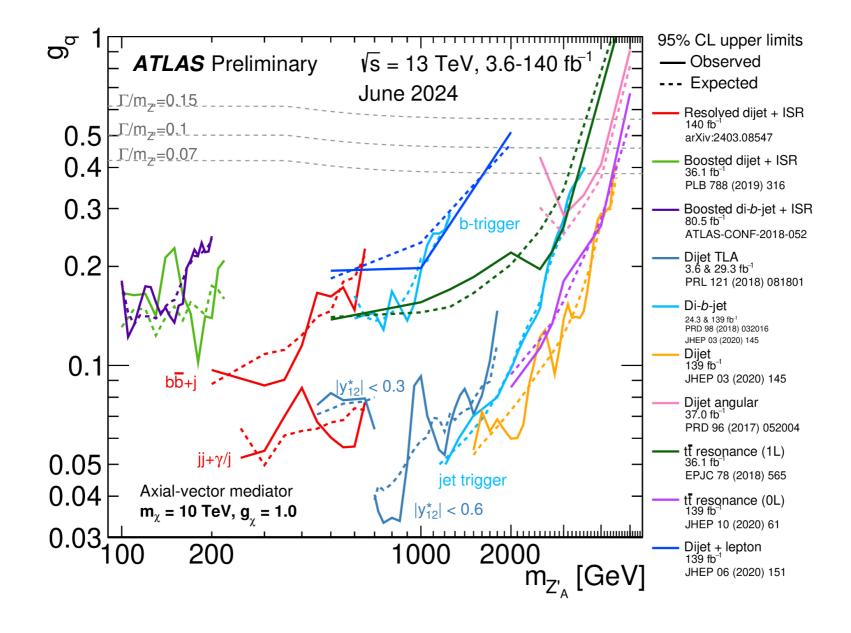



Searches for Dark Matter (DM) at the LHC

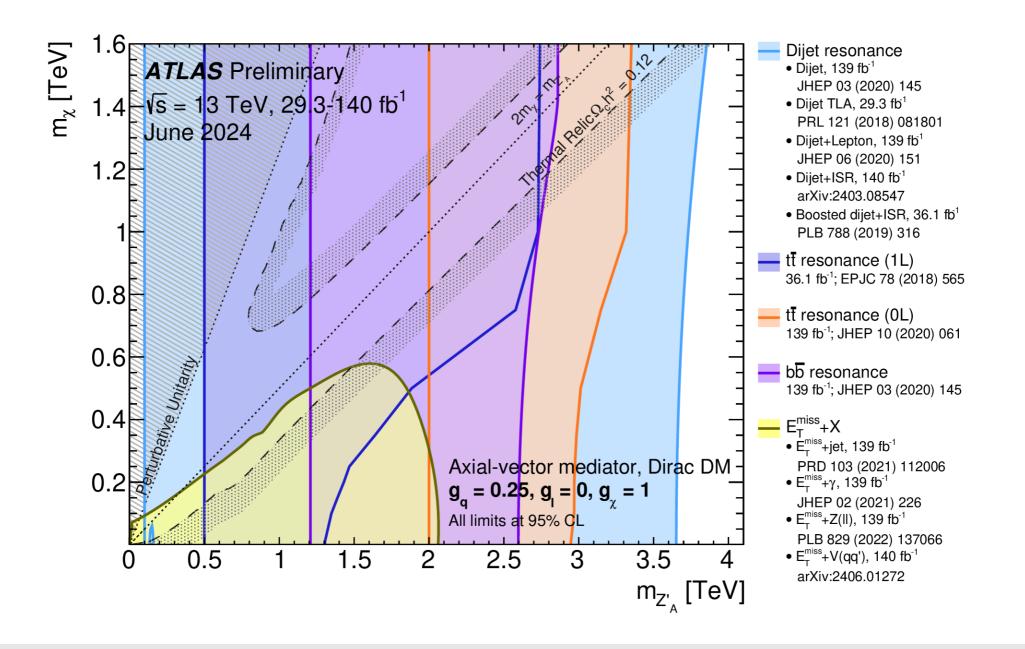
- LHC collides pp under well-controlled conditions
- SM particles can radiate other SM particles "X" (via initial-state radiation)
- Undetected DM \rightarrow imbalance in transverse momentum

Adopt simplified model with a "mediator" V
■ g_q (g_{DM}) – mediator coupling to quarks (DM)
■ m_{med} (m_{DM}) – mass of mediator (DM)

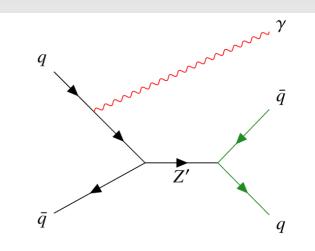

ATLAS & CMS: $g_q=0.25$ (S=1), $g_q=1$ (S=0), $g_{DM}=1$ $\Gamma=$ minimum width formula

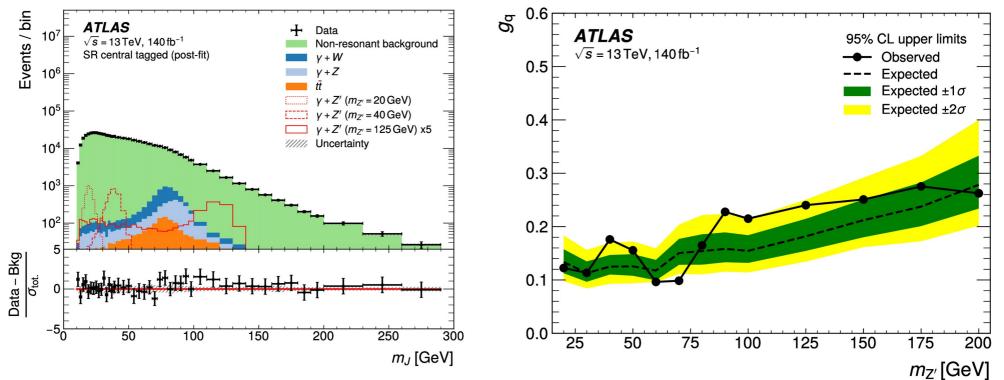

Due to large number of unknown parameters, the exclusion limits are model dependent (i.e. assumptions of spin, couplings, masses etc)

Search for high mass dijet resonances


Summary of searches for Dark Matter

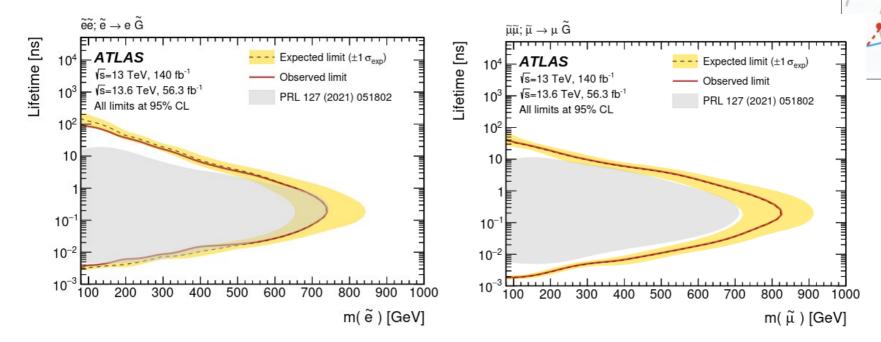
ATL-PHYS-PUB-2024-010


Summary of searches for Dark Matter (cont.)


ATL-PHYS-PUB-2024-010

And for low mass resonances too..

- Searches with S=1 mediator (Z')
- Focus on not well explored region of 50-100 GeV
- For pT>140 GeV, decay products of Z' are collimated
- Use invariant mass of the large-radius jet
- No significant deviations from SM



LLPs with lifetimes longer than a few picoseconds travel

Predicted for many BSM scenarios (SUSY etc)

- at least hundreds of microns before decaying.

 New large radius tracking and new beested decision
- New large radius tracking and new boosted decision tree trigger used to enhance sensitivity

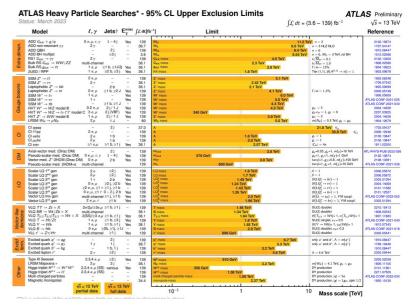
Improved limits compare Run2 only analysis

Recent results from the ATLAS experiment. S.V.Chekanov

Displaced leptons. First 13.6 TeV result

Long-lived particles (LLPs) occur in the Standard Model.

CERN-EP-2024-257


p

Strategy for "wide" model-independent searches

- Despite very impressive searches using proposed models, no new physics has been observed at the LHC.
- For model-agnostic searches, one can ask about how many *exclusive* event classes with leptons, jets, photons, etc., may potentially contribute to *pp* collisions. The answer ~ 20,000 (S.C. Universe, 2024, 10(11), 414)

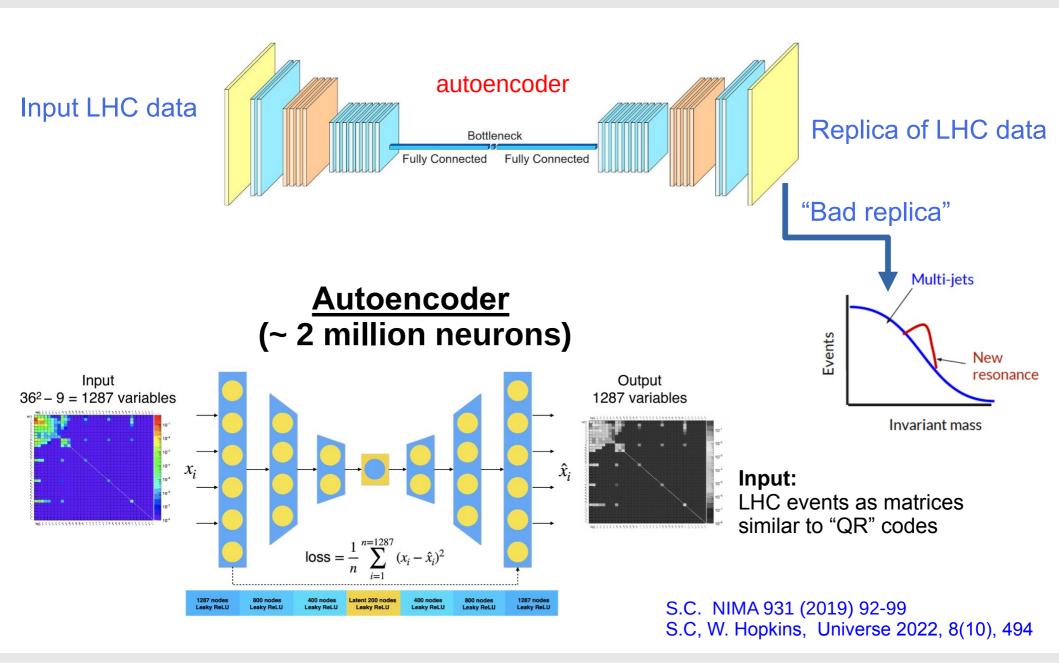
PP collisions ~
$$\sum^{20,000}$$
 W_i x (MET, N_{jets}, N_{bjets}, N_e, N_µ, N_γ..)

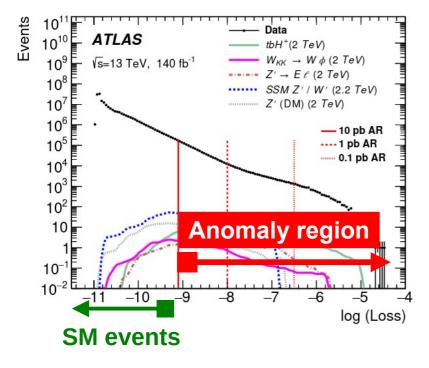
BSM-specific searches (~50 signatures)

- **So far the LHC studied a small fraction of such exclusive event categories.**
- Focus on rejecting known Standard Model events while analyzing 'anomalous' events which may not be covered by specific BSM models ?

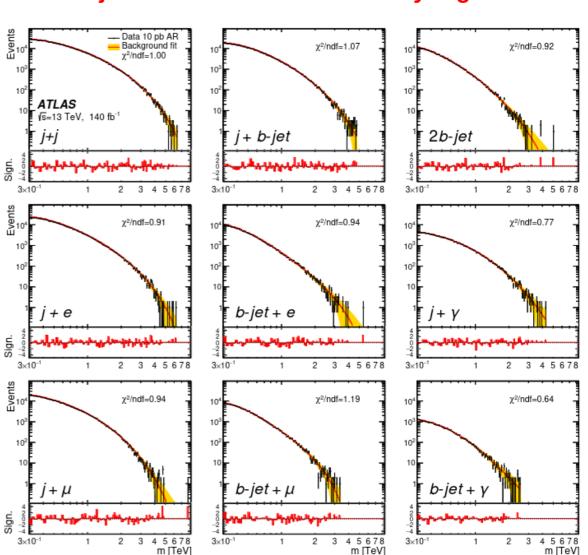
Strategy for "wide" model-independent searches

- Despite very impressive searches using proposed models, no new physics has been observed at the LHC.
- For model-agnostic searches, one can ask about how many *exclusive* event classes with leptons, jets, photons, etc., may potentially contribute to *pp* collisions. The answer ~ 20,000 (S.C. Universe, 2024, 10(11), 414)

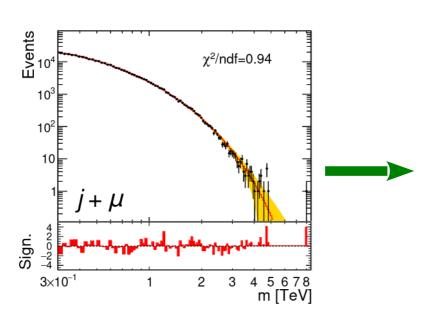

$$PP \text{ collisions} \sim \sum^{20,000} W_i \text{ x (MET, N_{jets.}, N_{bjets.}, N_e, N_{\mu,i}, N_{\gamma}..)}$$

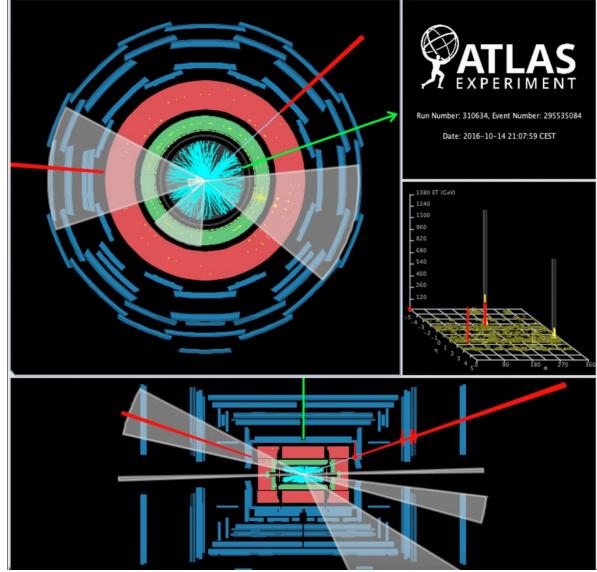

BSM-specific searches

- So far the LHC studied a small fraction of such exclusive event categories.
- Focus on rejecting known Standard Model events while analyzing 'anomalous' events which may not be covered by specific BSM models ?


Searching in anomaly regions

Invariant masses in the anomaly region

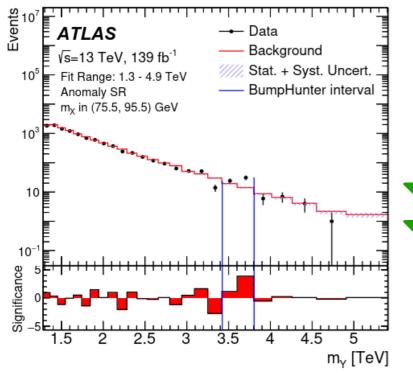


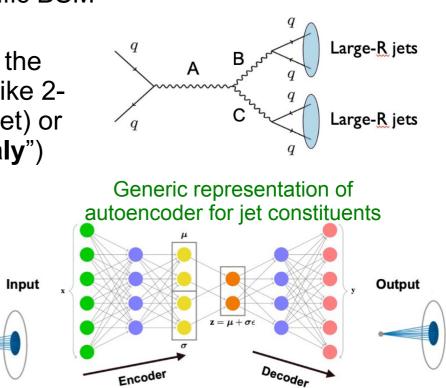

- Sensitivity of data to most BSM events in the anomaly region increased by 100-300%
- Invariant masses show no significant deviations
- 9 limits in the anomaly region are available for theorists

jet+X masses in the anomaly region

Typical event in anomaly region near 4.8 TeV (largest deviation)

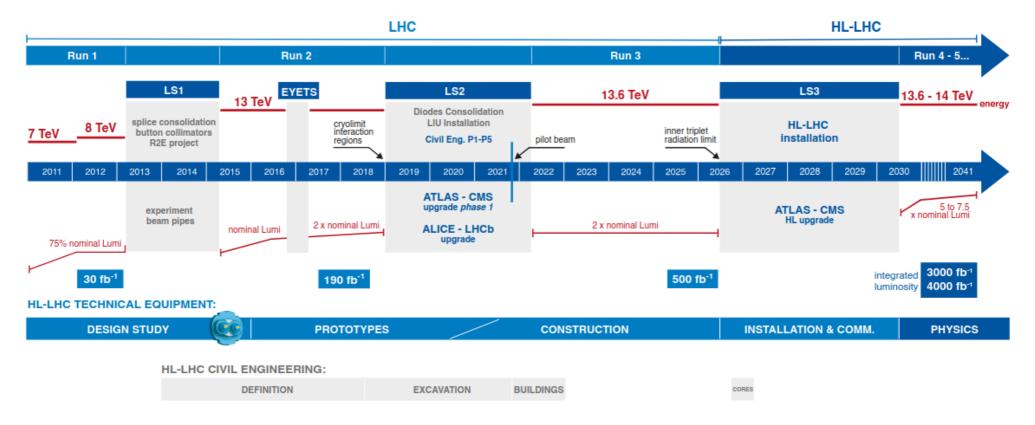
ATLAS Physics Briefings. https://atlas.cern/Updates/Briefing/Anomaly-Detection

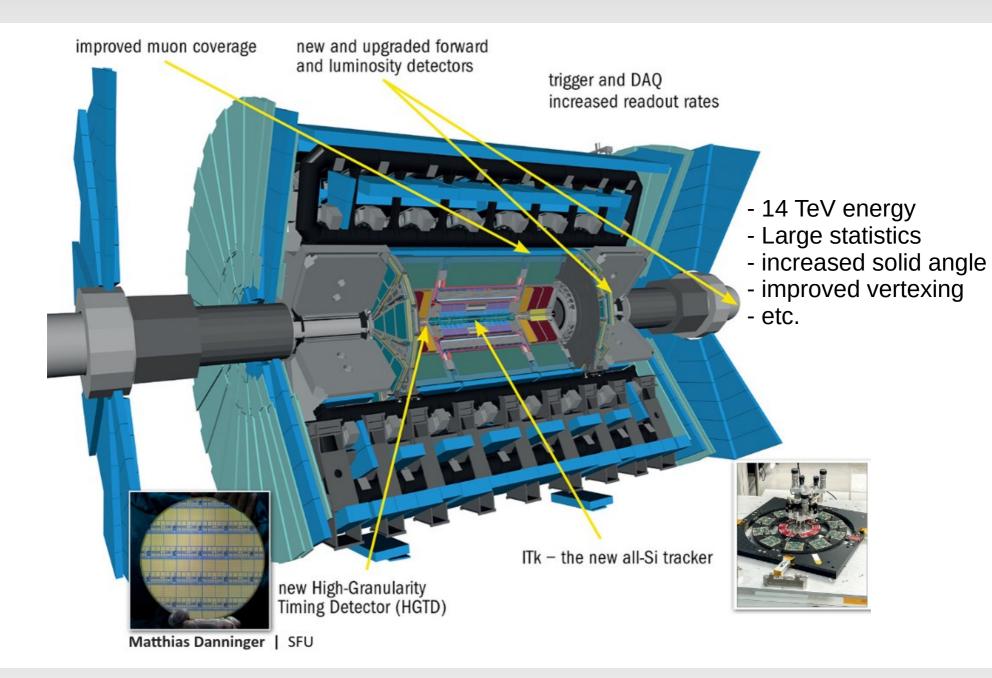

Jet-based anomaly detection


Phys. Rev. D 108 (2023) 052009 PRL 125, 131801 (2020)

Credits to Antonio D'Avanzo

- Train autoencoders on jet constituents. Look at the scores sensitive to various decay hypotheses, like 2prong (e.g. heavy flavor, three-prong and dark jet) or decays that do not fall in any category ("anomaly")
- **A** similar method adopted for $Y \rightarrow X H \rightarrow q\overline{q}b\overline{b}$




Largest deviation near 3.7 TeV at 1.4σ (global)
 95% confidence-level upper limits are set on the cross section of Y → X H → qqbb in various event topologies including "anomalous" decays

LHC / HL-LHC and future plans

- LS3 for the LHC is now scheduled to begin at the start of July 2026, seven and a half months later than planned.
- HL-LHC (Run 4) moved approximately by one year (June 2030)
- HL-LHC 5 -7.5 x $L_{nominal} \rightarrow 3 4 \text{ ab}^{-1}$ (<µ>=63)

ATLAS detector for the HL-LHC

Conclusions

- Many more new and interesting results from Run 2,3 which I had no time to discuss : focus on full data sets and newest results
- Extensive program for SM measurements and searches for BSM
- **Refined studies with complex final state (jet, top, y, tt̄, W, Higgs, etc)**
- Stay tuned: Ongoing Run3 analyses, some with very wide search using AI
 - 13 TeV \rightarrow 13.6 TeV CM energy, Increase in luminosity (x 2 \rightarrow larger statistics!)

This conference:

- Highlights of SM measurements including Top with the ATLAS experiment at the LHC (John Patrick Mc Gowan)
- Recent searches for new phenomena with the ATLAS detector (Zackary Lee Alegria)
- Higgs boson property measurements at the ATLAS experiment (Michela Biglietti)

More information about ATLAS publications on ATLAS twiki - ATLAS public results